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Characterization of microcracks in YCr03 
using small-angle neutron scattering and 
elasticity measurements 
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The mean crack radius, crack opening displacement, number density, and volume fraction 
have been estimated for a population of microcracks in polycrystalline YCr03 using small- 
angle neutron scattering in tandem with elasticity measurements. 

1. Introduction 
Microcracks are often studied through their effects 
on various bulk physical properties, including 
elastic moduli [1-4],  thermal diffusivity [5-7],  
and thermal expansion [8-9].  Direct study of the 
size, shape and number density of microcracks by 
surface sensitive techniques, such as the scanning 
electron microscope (SEM), is difficult because: 

1. the stress state at a specimen's surface is not 
the same as the stress state in the bulk, so the size 
and number of microcracks that appear on the sur- 
face may not be a representative sampling of the 
bulk microcrack population, and 

2. specimen preparation techniques almost 
invariably damage the specimen surface. 
In contrast, small-angle neutron scattering (SANS) 
yields information for bulk materials about the 
size, shape and volume fraction of structural 
inhomogeneities on a scale from about 1 nm to 
fractions of a micron [10]. Such information is 
generally derived by comparing the measured 
angular distribution of the scattered neutrons with 
calculated scattering curves based on some appro- 
priate physical model for the scattering centres. 

In this study, an analysis of SANS data yields 
estimates for the mean crack opening displacement 
and volume fraction of microcracks in polycrys- 
talline YCrO3. In addition, the SANS analysis is 
used in tandem with elasticity measurements to 

estimate the microcrack number density and the 
mean crack radius. 

YCrO3, which is an orthorhombic perovskite at 
room temperature, microcracks due to an apparent 
phase transition at "~ 1100 ~ C. Elasticity measure- 
ments indicate microcrack healing for an anneal 
temperature, Ta, below l l00~ Subsequent 
anneals with T A > 1100 ~ C cause healed specimens 
to return to their initial, microcracked state. Thus a 
given YCrO3 specimen can be put into either the 
healed or microcracked state depending on whether 
T A > l l 0 0 ~  or < l l 0 0 ~  Since the YCrO3 
specimens are initially sintered at " 1750 ~ C, the 
porosity and grain size are essentially unchanged 
by the anneals [11 ], making it possible to vary the 
microcrack number density without altering other 
microstructural features. The microstructural 
invariance is extremely important to SANS work, 
allowing one to "subtract out" scattering due to 
porosity and thus independently analyse the 
neutron scattering due to the population of 
microcracks. 

2. Experimental procedure 
The Ycro3 specimens used in this study were 
prepared from intimately mixed powder pre- 
cursors of chromium and yttrium. Details of the 
powder mixing and calcining procedures are given 
elsewhere [12]. Specimens were isostatically 
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Figure ] A schematic diagram of the apparatus used for the small-angle scattering measurements. Details of the instru- 
ment are given by Glinka [20]. 

pressed and sintered at 1750 ~ C in flowing forming 
gas (a 95% nitrogen and 5% hydrogen mixture) in 
an electric furnace. The resulting YCrOa billets 
were cut into prismatic bars using a low speed 
diamond saw and surface ground to a tolerance of 
-+ 0.005 cm. 

The average grain size was ~ 6.0#m, as deter- 
mined from the linear intercept technique on 
scanning electron micrographs of  fracture surfaces 
[13, 14].* Specimen densities, which range from 
about 92% to 96% theoretical, were calculated 
from the dimensions and mass of  each spechnen. 
X-ray diffraction analysis confirmed that the 
specimens were in the expected orthorhombic 
(distorted perovskite) structure at room tempera- 
ture. 

The sonic resonance technique was used for 
elasticity measurements [15]. All measurements 
were done at room temperature in air. The exper- 
imental technique is discussed in detail by Spinner 
and Tefft [16]. Elastic moduli were calculated 
from the resonance frequency data theory devel- 
oped by Pickett [17] and later modified [18]. 
]Vlanning [19] reviews the particular computational 
techniques used. 

Small-angle scattering measurements on YCrO3 
were carried out at the National Bureau of Stan- 
dards research reactor [20]. Fig. 1 shows a sche- 
matic layout of  the SANS instrument. Mean wave- 
lengths, X, from 0.51 to 0 .80nm (and bandwidth 
AX(FWHM)/X = 0.25) were used in the course of  
the measurements. Most of the data were taken 
with X = 0.625 nm. The scattered neutrons were 
counted with a 65 cm x 65 cm position-sensitive 
proportional counter located 3 .5m from the 
sample in a shielded vacuum chamber. The samples 
were also maintained under vacuum to minimize 
background due to air scattering. Specimen trans- 

mittances were obtained from the relative inten- 
sities of  the direct beam, with and without the 
specimen in place, having first attenuated the 
beam with a thin cadmium foil ("~ 0.i ram) to 
eliminate the need to correct the count rates for 
detector deadtime. 

In all cases the observed scattering patterns 
were circularly symmetric about the beam centre 
indicating no preferred orientation for the scat- 
terers. The data for each specimen were, therefore, 
averaged over annular rings, after being corrected 
for background and specimen transmission, to 
obtain the net scattering from the sample as a 
function of  the magnitude of  the scattering vector, 
Q, where Q is defined as 

Q = K t -  Kf 

47r 
]QI = - -  sin (0/2) (1) 

X 

where 0 is the angle between the incident and scat- 
tered neutron wave vectors K i and Kf (K = 27r/X). 

In order to estimate the surface area and num- 
ber of  scattering centres, the scattered intensity 
was calibrated using the incoherent scattering from 
a water-filled fused silica cell having a flat plate 
geometry and a 0.2 cm thickness of water normal 
to the neutron beam. Uncertainties in the multiple 
scattering corrections make the estimate of  the 
flux from the water scattering accurate to only 
about -+ 30%. 

3. Theoretical considerations 
Relatively few ceramic materials have been exam- 
ined with SANS, and in addition, no materials 
having microcracks or crack-like voids have been 
studied using SANS. As a first step in the SANS 
analysis it was necessary to establish whether the 

*Grain size measurements were performed for at least one specimen taken from each YCrO 3 billet. 
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neutron scattering was predominantly refractive 
or diffractive in nature. Information about the size 
and number of scattering centres can be obtained 
from either refractive (see, e.g. [23]) or diffractive 
[10] scattering, but the required analysis is quite 
different in the two cases. 

Theoretical [21, 22] and experimental [22] 
studies of neutron refraction show that the profile 
of the transmitted beam depends both on the 
incident wavelength (X) and on the thickness of 
the sample. On the other hand, the shape of scat- 
tering due to diffraction phenomena is a function 
only of the scattering vector, Q, defined in 
Equation 1. 

Because of their quite different functional 
dependencies, refraction can be distinguished 
from diffraction experimentally by comparing 
data taken with different incident wavelengths or 
with samples of various thicknesses. For the 
YCrOa specimens included in this study, the shapes 
of the experimental scattering curves, when 
plotted as a function of Q, remain invariant with 
respect to changes in both the incident wavelength 
and the specimen thickness, indicating the scat- 
tering is predominantly due to diffraction. 

For small-angle diffraction, the measured scat- 
tered intensity is proportional to a cross-section, 
dY,/d~2, which can be expressed quite generally as 

-~ vp(r)eiQ'r dr (2) 

where the integration is over the entire specimen 
volume, V, illuminated by the neutron beam. Thus 
what is directly measured is the square of a Fourier 
transform of a scattering density, p(r), which con- 
tains structural information for the specimen. The 
density p(r) is given by bn, where b is a coherent 
scattering amplitude [24], averaged over atomic 
dimensions, and n(r) is the number of nuclei per 
unit volume at r. For a material consisting of dis- 
tinct particles* of scattering density pp, imbedded 
in a matrix of scattering density Pro, Equation 2 
becomes 

where the integration includes the total particle 
volume and A t) = Pro--pp.t If the particles are 
assumed to be nearly identical, but randomly dis- 

persed throughout the host material, Equation 3 
reduces to 

(Q)  = V (ha)2 IFp(Q)I' (4) 

where Fp(Q) is the single-particle form factor 

F,(Q) = 1 fVp e,Q., d r (5) 

and Np is the total number of particles, each 
having volume Vp. 

Explicit expressions for dE/d~2 are obtained 
by evaluating Equation 5 for various particle 
geometries and/or Q ranges. For example, for 
randomly oriented, sharp-edged scatterers of any 
given geometry, Guinier [24] has shown that the 
small Q approximation to'Equation 4 is 

dZ Np(Ap) 2 
d--~ = " V Vg exp (-- R~Q'I3) (6) 

where Rg is the particle's radius of gyration with 
respect to its centre of gravity. 

Similarly, for large Q, Porod [25] has shown 
that Equation 4 reduces to 

dE 2rr(Ap) 2 S 
"" Q4 (7) 

d~ V 

where S is the total surface area of the scattering 
centres contained in the volume, V, illuminated by 
the neutron beam. 

For the special case of randomly oriented thin 
discs of thickness 2H and diameter 2a, Porod [25] 
has calculated that Equation 4 reduces to 

d= 2 ] 
d---~ (Q) = V ~Q,a2] exp ( -  Q'H'/3) 

(8) 

when QH< 1 ~ Qa. The randomly oriented thin 
disc model should be particularly applicable to 
scattering from microcracks. 

Another approach to describing the scattering 
from a two-phased material has been developed by 
Debye et al. [26], with the specific problem of a 
porous material in mind. The model of Debye 
et aL proceeds from the same basic premise that 
there are only two scattering densities in the prob- 
lem, a constant PM in the material, and zero when 
voids represent the second phase. Beyond this, the 
only further assumption is that the voids be corn- 

*"Particles" here could refer to precipitates, voids or second phases which are assumed to be sufficiently dilute so that 
interparticle interference effects can be neglected. 
tNote that Ap refers to a difference in the scattering densities between the matrix and "particle" phases. 
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pletely random in size, shape, and distribution 
throughout the material. The observable cross- 
section for the Debye model is given by 

dZ 81r aa(Ap)~r -- ~) 
d--~ (Q) = (1 + Q2a2)2 (9) 

where the parameter a represents a correlation 
length, or characteristic void size in the case of a 
porous solid, and r is the pore volume fraction. 

4 .  R e s u l t s  a n d  d i s c u s s i o n  

In order to compare the measured neutron scat- 
tering curves with the Guinier, randomly oriented 
thin disc, and Debye models (Equations 6, 8, and 
9, respectively) SANS measurements were made 
on both the microcracked and healed states of a 
given YCr03 specimen. After correcting all data 
for background and specimen transmittance, the 
neutron scattering contribution from the micro- 
crack population only was calculated from 

IDIFF(Q) = Imicro(Q)--]HEALED(Q) (10) 

where Imie~o and/HEALED represent the measured 
scattered intensity, at a given Q, for the specimen 
in the microcracked and healed states, respectively. 
The difference spectra, IDIFF, can then be analysed 
in terms of the models discussed above. 

In Fig. 2 the net scattering, IDIFF, from a 7 nun 
thick specimen of YCrOa is plotted on a logarith- 
mic scale against the scattering vector Q. The solid 
curve in the figure is a porod law, Equation 7, fit 
to the data which adequately describes the shape 
of the scattering at larger Q (Q > 0.003 nm -1) but 
lies systematically below the low Q data. Thus a 
different functional form is required to represent 
the data in the small Q region. 

Table I gives the results of fitting the IDIFF data 
for low Q ( 0 . 0 0 1 n m - l < Q - < 0 . 0 0 2 2 n m  -I)  to 
Equations 6, 8 and 9. The fitting error is estimated 
by the residual R, defined as 

S IIDIFF - -  I~ t  I 
R =  

IDIFF 

1 2 ~  ' I , I : J , f , l , 
J I i I i I I I ' 

t 0 Yttrium Chromite 

o ,  ' ' , J , ,  I ' I ' J ' 
0000 0.002 0,004 0006 0.008 0.010 0.012 

SCATTERING VECTOR Q (nm -1) 

Figure 2 Net scattering (o) due to microcracks from a 
7 mm thick specimen of YCrO 3 plotted on a logarithmic 
scale against the scattering vector Q. The curve is a least- 
squares fit of a Porod law, Equation 7, to the data. The 
fit is satisfactory at larger Q (Q=0.003nm -1) but lies 
systematically below the data at small Q. 

where IDIFF is as defined in Equation 10 and I~t 
is the fitted intensity value. The randomly oriented 
thin disc model (Equation 8) yields the smallest 
residual, indicating, in turn, that the parameter H 
(which represents half the disc thickness) may be 
an approximate measure of half the mean crack 
opening displacement (COD). The fit obtained 
with the thin disc model is shown in Fig. 3. 

Using the high Q data (0.003nm -1 ~<Q<~ 
0.011 nm-1) * and Equation 7, the total surface 
area of  the microcracks, S, was estimated as 

(1.5 + 0.5) x 103 cm 2. Thus 

S = N~(S~) 

where Are is the total number of microcracks and 
<S c) is the average surface area of a single micro- 
crack. For the thin disc mode/, where (a) is much 
greater than H, 

S c -~ 27r(a 2) 

The number density, n, of microcracks is thus 
given by 

S/Se S 1 
n - V V2~r(a:) (11) 

TABLE I 

Model Functional form Fitted parameters R 

Randomly oriented Equation 7 H = 12.2 -+ 0.3 nm 0.022 
thin discs 

Guinier Equation 6 Rr 17.5 -+ 0.5nm 0.070 
Debye Equation 9 A = 50 -+ 40 nm 0.045 

*The high Q data include 52 points, all of which were normalized to the scattering from water. 
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Figure 3 The data points are the low Q scattering from 
microcracks in a 7 mm thick specimen of YCrOa. The 
curve is a least-squares fit to the data of the scattering 
function for randomly oriented thin discs of thickness 
2H. 

Rearranging Equation 11 and using the measured 
value of S yields 

S 
n(a 2} = - -  ~-- 3.4 x 102cm -~ (12) 

2rtV 

An estimate for (a), the mean crack radius, may be 
obtained by using Equation 12 in conjunction 
with elasticity data. For randomly oriented micro- 
cracks, Budiansky and O'Connell [28] relate the 
microcrack-induced decrement in the bulk Young's 
modulus, Y, and Poisson's ration, v, to a crack 
density parameter, e, where 

e = n(a a) (13) 
and 

Y =  Yo[1 16 ( l - -p2 ) ( lO- -3v ){  ~ - ( t4)  

In Equation 14, Y0 and v0 refer to the Young's 
modulus and Poisson's ratio of the unmicrocracked 
body, respectively, while Y and v refer to the 
microcracked state. 

From elasticity measurements, Yo ~ 220 GPa, 
Y ' 9 0  to l l0GPa,  v0=0.28,  and v=0 .14 ,  
which (using Equation 14) yields the estimate 
e ~ 0.29. 

An estimate for (a) can be obtained from 

(a 3 } 
e/n(a z) = (a2) ~- 1.5(a), (15) 

where the evaluation of (aa)/(a 2) is discussed in 
the Appendix. Using Equations 12 and 15, the 
mean crack radius, (a}, is approximated by (a) '" 
5.7#m. This (a} estimate corresponds well with 
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the measured average grain size of 6 ~m, which is 
in agreement with the model of localized stress 

inducing microcracks that are approximatdy one 
to several grain diameters in length [6, 29, 30]. 
For a COD of 2H ("~ 25 nm), this gives a crack 
aspect ratio of ~ 1.5 to 3.5 x I0  -3, which again is 
in rough agreement with observed microcrack 
aspect ratios observe for several materials [6, 31 ]. 

The volume fraction of microcracks can be 
determined from the SANS measurement as 

A___V_V = Ne(rra)2(2H) = __SH (16) 
V V V 

where, in this case, V, the volume illuminated by 
the neutron beam is 0.7cm a. Using H =  12.2nm 
and S = 1.5 x 10 3 cm a yields 

aV 
- - - - ~  2 . 6 x 1 0  -a. 
V 

Batzle et aL [32] and O'Connell and Budiansky 
[33] have found, for geological materials, volume 
fractions of microcracks ranging from ~ 1 x 10 -3 
to 5 x 10 -3. Using Equation 12, and noting that 
(a2)/(a) 2 = 4/1r (Appendix) the crack number den- 
sity may be estimated as 

n ~ 8.2 x 108cm -a. 

5. Conclusions 
The mean crack radius, crack opening displace- 
ment, number density, and volume fraction have 
been estimated for a population of microcracks in 
polycrystalline YCrO3. To the authors' knowledge, 
this study represents the first analysis of these 
microcrack parameters in a bulk ceramic, although 
there have been SANS studies of pores in ceramics. 
This procedure could be applied to other materials, 
if microcracked and nonmicrocracked specimens 
of a given material have similar populations of 
background scatterers (such as pores, inclusions, 
etc.) allowing such scattering contributions to be 
subtracted off and the remaining scattering to be 
analysed in terms of models, such as the thin disc, 
that are appropriate for scattering from micro- 
cracks. 

The crack opening displacement, 2H, and the 
volume fraction of cracks, AV/V,  can be obtained 
directly from the SANS data, using the low Q, thin 
disc approximation for A V / K  The mean crack 
radius, (a), and the crack number density, n, can 
be obtained by combining the SANS analysis with 
a complementary elasticity analysis, tt should be 



emphasized that the elasticity analysis yields only 
the product n(aa), and the Porod approximation 
gives the product n(a2). However, one can use the 
elasticity and SANS data in tandem to estimate 
(a) and n. 

Acknowledgements 
The authors acknowledge the help of T. Negas, 
Inorganic Materials Division, National Bureau of 
Standards, Washington, D.C., and L. P. Dominques, 
Trans-Tech, Inc., Gaithersburg, Maryland, in the 
preparation of high purity sintered polycrystalline 
YCrOa billets, from which the authors prepared 
specimens for elasticity and SANS analysis. This 
work was supported in part by the Lawrence 
Berkeley Laboratory. In addition, one of the 
(E. D. Case) gratefully acknowledges support from 
a National Research Council postdoctoral asso- 
ciateship during part of this work. 

Appendix  
Grain size distributions in a polycrystalline 
material have often been described in terms of 
Rayleigh or lognormal distributions [34, 36]. The 
general form of the Rayleigh probability distri- 
bution, pz(x) is given by 

pr(X) = bx exp (-- cx 2) for x >~ 0 

The normalization condition 

f ; bx exp (-- cx 2) dx = 1 

requires that b = 2c. I fx  is distributed according to 
the Rayleigh distribution, then (x), the mean of 
x, is given by 

(7r 11/~ (x)-= 2 f~jo b x 2 e x p ( - - b x 2 )  dx  = 

The second moment, (x2), and the third moment, 
(xa), are given by 

(x 2 ) = 2 bx a exp (-- bx 2) dx b 

(x a) = 2 f ;  b x 4 e x p ( - - b x 2 )  dx = 312 

Thus, 
(rr.~ 1/2 

(x3)/(x 2) = i ~  } (3/2) = 1.5(x) 

Therefore, if the grain radius, a, in YCrO3 is dis- 
tributed according to the Rayleigh distribution, 
this would give 

<aa)/(a 2) = 1.5<a) (A1) 

The lognormal probability distribution func- 
tion, pl(D), can be expressed as [34, 37], 

1 1 
pl(D) - (21ro2)1/2 o exp [-- ( lnD --/a)2/2o 2] 

where o = the standard deviation of In D and/~ = 
the value of In D averaged over the pdf. The jth 
moment of the lognormal distribution is given by 
[341 

(z;} = D~m~ exp (j2o~/2) 

where Dine a refers to the median value of D. Thus, 

(Da) 
(D~) = Dine a exp (5a2/2) = (D) exp (2or z) (A2) 

If D is the equivalent spherical diameter of a grain, 
then o ~ �89 by both experimental observation and 
theoretical considerations [34, 35]. For o~�89 
Equation A2 gives 

(D a ) 
"" 1.6(D) (D 2 ) 

or, equivalently in terms of a, the grain radii, 

(a3> 
<a2) 1.6(a> (A3) 

Therefore, whether the grain size distribution is 
Rayleigh or lognormal, Equations A1 and A3 give 
approximately the same results for the ratio of the 
third moment to the second moment. 
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